Roll No. Total No. of Pages : 03
Total No. of Questions : 07
M.Sc. (Applied Mathematics) (Sem.–4) DISCRETE MATHEMATICS Subject Code : MSM-511 M.Code : 75979
Time : 3 Hrs. Max. Marks : 80
 INSTRUCTIONS TO CANDIDATES : 1. SECTION-A is COMPULSORY consisting of EIGHT questions carrying TWO marks each. 2. SECTION - B & C have THREE questions in each section carrying SIXTEEN marks each. 3. Select atleast TWO questions from SECTION - B & C EACH.
SECTION-A
Q1. Write short notes on :
(a) Define the Fibonacci sequence and find its generating function.
(b) Which sequence has the generating function $\frac{1}{1-z-z^2}$?
(c) Reduce the expression into simpler form by using the rules of Boolean algebra $AB + AC + \overline{A} \overline{BC}(AB + C)$.
(d) Prove that the complement of every element on a Boolean algebra B is unique.
(e) Prove that the maximum degree of edges in a graph G with n vertices and no multiple edges are $\frac{n(n-1)}{2}$.
(f) Prove that the maximum number of nodes in a binary tree of depth d is $2^{-d} - 1$, where $d \equiv 1$.
(g) How many edges must be drawn in order to obtain a planar graph with 5 vertices that define 7 regions? Draw such graph.

(h) What is an internal vertex, a leaf and a subtree in a rooted tree?

1 M-75979

(S30)-2450

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

- Q2. (a) Find the disjunctive normal form of $(p \wedge q) \checkmark (\lor p \ r)$. Using inference theory prove that r is a valid conclusion following from the hypothesis $(p \wedge q) \ r, \ p \ s, q \lor s, \ s.$
 - (b) By finding generating function of the sequence $\{S(n)\}$. find the solution of the recurrence relation S(n + 2) 7S(n + 1) + 12 S(n) = 0, where S(0) = 2, S(1) = 5.

CON

- Q3. (a) Consider the lattice $D_{60} = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$
 - a) Draw the Hasse Diagram of D_{60} .
 - b) Find all Join-irreducible elements.
 - c) Find all atoms.
 - d) Find complements of 2 and 10, if they exist.
 - e) Express each x as a join of irredundant join-irreducible elements.
 - (b) Consider the Boolean expression $f(x, y z) = z(x^{\dagger} + y) + y^{\dagger}$. Reduce it into sum-of-product form and hence to complete sum-of-product form.
- Q4. (a) An undirected araph possesses an Eulerian circuit if and only if it is connected and its vertices are all of even degree. Prove with the help of a suitable example.

(b) Show that $e: B^3 \to B^4$ defined as e(000) = 1100, e(100) = 1001.

e(010) = 1010, e(001) = 0011, e(110) = 1111, e(101) = 0110, e(011) = 0101, e(111) = 0000 is a group code. Find how many errors e can detect.

SECTION-C

- Q5. (a) Solve $S(K) 4S(K-1) + 4S(K-2) = 3K + 2^{K}$, where S(0) = 1, S(1) = 1.
 - (b) Find the circuit diagram of $f(x,yz) = xy^{1} + x^{1}z$.

2 | M-75979

(\$30)-2450

Download all NOTES and PAPERS at StudentSuvidha.com

Q6. (a) Consider a Boolean expression f(a,b,c) = ((ab)c)((a+c)(b+d)).

Reduce it into a sum-of-product form.

- (b) State and prove Euler's Formula for graphs.
- Q7. (a) Show that the graph K_5 is non-planar.
 - (b) Let $e: B^m \checkmark B^n$ be a group code. Then show that the minimum distance of e is the minimum weight of a non zero code word.

a contraction of the second se

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 M-75979

(S30)-2450

Download all NOTES and PAPERS at StudentSuvidha.com